domingo, mayo 15, 2011

3.12 Función Delta Dirac

La delta de Dirac es una función generalizada que viene definida por la siguiente fórmula integral:

La delta de Dirac no es una función estrictamente hablando, puesto que se puede ver que requeriría tomar valores infinitos. A veces, informalmente, se define la delta de Dirac como el límite de una sucesión de funciones que tiende a cero en todo punto del espacio excepto en un punto para el cual divergería hacia infinito; de ahí la "definición convencional" dada por la también convencional fórmula aplicada a las funciones definidas a trozos:

Es frecuente que en física la delta de Dirac se use como una distribución de probabilidad idealizada; técnicamente, de hecho, es una distribución (en el sentido de Schwartz).
En términos del análisis dimensional, esta definición de δ(x) implica que δ(x) posee dimensiones recíprocas a dx.

No hay comentarios.:

Publicar un comentario