La delta de Dirac no es una función estrictamente hablando, puesto que se puede ver que requeriría tomar valores infinitos. A veces, informalmente, se define la delta de Dirac como el límite de una sucesión de funciones que tiende a cero en todo punto del espacio excepto en un punto para el cual divergería hacia infinito; de ahí la "definición convencional" dada por la también convencional fórmula aplicada a las funciones definidas a trozos:
Es frecuente que en física la delta de Dirac se use como una distribución de probabilidad idealizada; técnicamente, de hecho, es una distribución (en el sentido de Schwartz).
En términos del análisis dimensional, esta definición de δ(x) implica que δ(x) posee dimensiones recíprocas a dx.
No hay comentarios.:
Publicar un comentario