Teorema. Sea f(t) una función seccionalmente continua en t ≥ 0 y de orden exponencial α, y si ℒ{ f(t)} = f(s), entonces:
F(t) | F(s) = ℒ {f}(s) |
1 | 1/s, s > 0 |
eat | 1/s – α, s > α |
tn, n = 1, 2, … | n!/sn+1, s > 0 |
sen bt | b/s2 + b2, s > 0 |
cos bt | s/ s2 + b2, s > 0 |
eattn, n = 1, 2, … | n!/s-αn+1, s > α |
eat sen bt | b/(s - α)2 + b2, s > α |
eat cos bt | s – a/(s - a)2 +b2, s > α |
No hay comentarios.:
Publicar un comentario